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ABSTRACT

Water limited ecohydrological systems (WLES), with their broad extent, large stores of global terrestrial carbon, potential
for large instantaneous fluxes of carbon and water, sensitivity to environmental changes, and likely global expansion, are
particularly important ecohydrological systems. Strong nonlinear responses to environmental variability characterize WLES,
and the resulting complexity of system dynamics has challenged research focussed on general understanding and site
specific predictions. To address this challenge our synthesis brings together current views of complexity from ecological
and hydrological sciences to look towards a framework for understanding ecohydrological systems (in particular WLES) as
complex adaptive systems (CAS). This synthesis suggests that WLES have many properties similar to CAS. In addition to
exhibiting feedbacks, thresholds, and hysteresis, the functioning of WLES is strongly affected by self-organization of both
vertical and horizontal structure across multiple scales. As a CAS, key variables for understanding WLES dynamics are related
to their potential for adaptation, resistance to variability, and resilience to state changes. Several essential components of CAS,
including potential for adaptation and rapid changes between states, pose challenges for modelling and generating predictions of
WLES. Model evaluation and predictable quantities may need to focus more directly on temporal or spatial variance in contrast
to mean state values for success at understanding system-level characteristics. How coupled climate and vegetation changes
will alter available soil, surface and groundwater supplies, and overall biogeochemistry will reflect how self-organizational
ecohydrological processes differentially partition precipitation and overall net metabolic functioning. Copyright  2011 John
Wiley & Sons, Ltd.
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INTRODUCTION

Water limited ecohydrological systems (WLES) are char-
acterized hydrologically by potential rates of evapotran-
spiration greatly exceeding rainfall input (Allison and
Hughes, 1983). These conditions include both arid and
semi-arid lands, which cover 35–45% of the global ter-
restrial surface (Asner et al., 2003; Reynolds et al., 2007)
and store about 241 Pg or 15Ð5% of world’s total of
1550 Pg organic C to 1 m (Lal, 2004), approximately
twice the amount stored in temperate forest ecosystems
¾104–155 Pg (Post et al., 1982). However, areas where
WLES-like processes are prominent for some periods of
the year are likely to extend much further (Figure 1).
Run-off in these systems is rare and, when it does occur,
is typically in the form of infiltration excess overland
flow (Yair and Lavee, 1985) with transmission losses to
the soil profile along the overland flowpath or subsur-
face stormflow via snowmelt following the connectivity
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of storage element filling in the subsurface (Unnikrishna
et al., 1995; Kelleners et al., 2010). While in most WLES
the mean rate of hydrological cycling and biological func-
tioning is low, these systems are characterized by large
pulses of activity when water becomes available and
resulting rates of activity can often exceed those from
more humid environments (Birch, 1964; Noy-Meir, 1973;
Lee et al., 2004; Xu et al., 2004; Jenerette et al., 2008;
Scott et al., 2009). The propensity for pulsed dynamics
leads to a strong nonlinear sensitivity to environmental
variability. To a broad extent, large stores of global ter-
restrial carbon, potential for large instantaneous fluxes,
sensitivity to environmental changes, and likely global
expansion of WLES make them a particularly important
ecohydrological system to understand. More specifically,
there is a pressing need to better quantify coupled ecosys-
tem and hydrologic functioning during periods of water
limitation. Understanding the potential global feedbacks
associated with the dynamics of WLES are essential
in forecasting future rates and consequences of global
changes.
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Figure 1. Distribution of the temporal extent of land surface water
limitation.The map shows increasing darkness of brown with the number
of months where potential evapotranspiration exceeds precipitation. Areas
in blue have precipitation always exceeding potential evapotranspiration.
These patterns are summarized below as the proportion of land area
for each possible number of months. Only 2Ð9% of global land area is
continually wet. On average the land surface is dry for 7Ð1 months of the
year. Precipitation data are from a 30-year mean monthly climatology
(Cramer and Leemans, 2001). Potential evapotranspiration data are
from a modified Food and Agricultural—Penman–Monteith algorithm
implemented using the WorldClim Global Climate Data (Trabucco and

Zomer, 2009). Data were processed using ArcGIS 9Ð3.

Achieving the interdisciplinary synthesis required for
ecohydrology will build on a reconciliation of how
concepts and technical approaches used to generate
knowledge have been defined across disciplines. This rec-
onciliation needs to address the two contrasting science
views influencing ecohydrology: the Newtonian view
where understanding broadly applicable general mech-
anisms is desired and the Darwinian view where an
understanding of the specific details of particular sys-
tems is sought (Harte, 2002). A hallmark of both ecology
and hydrology has been an appeal to the generality of

a mechanistic understanding. However, research in both
fields is faced with a reality where any given system
has many idiosyncratic state dependencies. A comprehen-
sive reductionist understanding in ecology or hydrology
has infrequently been achieved and only after substantial
effort towards resolving many individual processes intrin-
sic to the particular system (McDonnell et al., 2007).
Even when such detailed process information has been
developed, surprises in ecohydrological trajectories still
occur (Heffernan, 2008). To link across the multiple
paradigms, ‘complexity science’ approaches may pro-
vide a useful framework (Prigogine and Stengers, 1984;
Holland, 1992; Kauffman, 1993; Cowan et al., 1994). In
scope, complexity science links relatively simple rela-
tionships at relatively fine scales and allows interac-
tions among networks of these discrete units to domi-
nate system dynamics. The complexity of the network,
described by the number, diversity, and connectivity
of units, greatly influences how these systems behave.
WLES are principally characterized as multiple-scaled,
with high spatial and temporal variability; feedbacks of
WLES extend to decadal (Scott et al., 2009) and subcon-
tinental (Dominguez et al., 2009) scales. As such, these
systems exhibit much complexity in both structure and
functioning and probably a complexity science approach
will be useful for synthesis (Table I).

The objective of our synthesis is to look towards a
framework for understanding ecohydrological systems (in
particular WLES) as complex adaptive systems (CAS).
We bring together current views of complexity from
ecological and hydrological sciences in this framework,
suitable for understanding WLES water dynamics and
how these water fluxes influence and respond to whole-
ecosystem metabolism. We first organize key nonlin-
ear ecohydrological mechanistic processes and incorpo-
rate them into a general understanding of whole system
dynamics. We examine how complex ecohydrological

Table I. Examples of common properties associated with complex systems from both ecological and hydrological processes.

Property Ecological example Hydrological example

Self-organization Microclimate effects; ecosystem engineering Drainage network; flow path development
Soil development; vegetation patterns

Threshold Xylem embolism; leaf out; leaf fall; birth/death Flooding; throughfall; snowmelt; saturated flow
Adaptation Species shifts; phenotypic plasticity Erosion, deposition
Nonlinearity Temperature response curves Soil–water retention curves; run-off generation;

preferential flow; plant uptake of soil moisture
Growth curves

Irreversible Extinction Erosion; weathering;
Scale-free behaviour Patch distributions Stream networks

Patch boundaries
Scale-dependent

behaviour
Boundary layer conductance Dispersion

Organismal regulation
Legacy Reproductive effort Antecedent soil-moisture conditions;

geomorphology
Nutrient/resource patches

Hysteresis Soil respiration; delays in delivery of
photosynthetic products to the roots due to
phloem transport time

Soil–water retention

Feedbacks Growth Erosion
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systems influence both local carbon and water cycles
and in aggregate influence global earth system dynamics.
Throughout, we use diverse examples to show the flexi-
bility of complexity approaches in understanding WLES,
highlighting key processes whose importance can only be
understood in the context of the embedded system.

ECOHYDROLOGICAL SOURCES OF COMPLEXITY

Ecohydrological systems can be described as a set of
whole-system-scale processes that result in a series of net
exchanges with the environment and in the maintenance
of the system’s intrinsic organizational characteristics.
Net exchanges between a system and its environment
are determined by gross fluxes of individual compo-
nents and partitioning of incoming fluxes into multiple
effluxes. Such fluxes include mass, energy, and infor-
mation exchanges, which differ in their conservation
properties—with energy and material being conservative
and information being non-conservative—and potential
for recycling, with energy not recycled and materials con-
tinually recycled (Reiners and Driese, 2003). Examples
of each flux include energy, CO2, and biological species.
The dynamics of these fluxes have many sources of com-
plexity. Net and component fluxes respond nonlinearly
to environmental variation, depend on traits of the biotic
communities, and are influenced by historical legacies
at multiple timescales (Figure 2). While nonlinear pro-
cesses alone are insufficient to impart complex behaviour
to a system, complex systems necessarily have many
nonlinear interactions, and developing an understanding
of these sources of nonlinearities is an essential foun-
dation (Phillips, 2003). The environmental drivers pro-
vide an initial source of complexity with environmental
variability occurring across all scales and legacies from
past variability strongly influencing present states. Bio-
logical responses to environmental variation, including
amplification, dampening, and nonlinear state changes,
are another source of complexity. Finally, the structure
of the interaction network provides a source for complex-
ity with large numbers of components that vary in their
individual characteristics and are richly connected.

Interactions between carbon, water, energy, and biology

Soil moisture is a fundamental constraint of most eco-
hydrological processes and, in particular, of ecosystem
metabolism in water limited regions (Noy-Meir, 1973).
How biological processes respond to soil moisture deter-
mines, to a large extent, ecosystem functioning. The
dynamics of this fundamental ecohydrological variable
have many sources of nonlinearities. For the same mois-
ture input, local geomorphology and vegetation can affect
groundwater recharge, access to groundwater, energy
inputs, run-on and run-off (Wilcox et al., 2003; Zou
et al., 2007; Goodrich et al., 2008; Scott et al., 2008b).
Seasonality of precipitation can influence the amount
of effective moisture available for biological processes

Figure 2. Conceptual relationship between precipitation variability and
ecosystem functioning, with a particular emphasis on carbon cycling
processes. Dashed lines denote direct effects and solid lines denote indi-
rect effects of precipitation variability. This process-based conceptual
model highlights strongly interactive meteorological and biological pro-
cesses associated with ecosystem functional responses to precipitation

variability.

and be directly related to temperature dependent enzy-
matic reactions (Goodrich et al., 2008; Jenerette et al.,
2010). Plants and soil organisms differ markedly in their
metabolic sensitivity to soil moisture (Huxman et al.,
2004; Williams et al., 2009), which leads to large differ-
ences in respiratory and photosynthetic processes. Plant
community composition can strongly regulate ecosystem
sensitivity to moisture availability; with major differ-
ences including continua of C3, C4, and Crassulacean acid
metabolism (CAM) photosynthetic pathways and domi-
nance by wood and grass life-forms. Transitions from C3

to C4 and CAM lead to large increases in leaf-level water-
use efficiency, accomplished through decoupling electron
transport and carboxylation; however, these increases inc
efficiency come at an energetic cost that reduces maxi-
mum photosynthetic rates. Much research has examined
potential differences among these life-forms, and even
species differences within similar life-forms can lead to
differences in whole-ecosystem functioning (Scott et al.,
2010). Another key life-form difference is the contrast
between woody and grassy species. Woody plants gen-
erally have greater access to deeper water storage than
grasses. However, grasses have more plastic phenological
responses to precipitation variability. Shifts in community
composition between woody and grass dominated veg-
etation communities alter vertical rooting distributions
and depths (Schenk and Jackson, 2002), effectively alter-
ing ecosystem water and carbon balance (Huxman et al.,
2005; Hultine et al., 2006; Scott et al., 2009). These dif-
ferences in access to deeper water sources complicate
our understanding of how distinct plant functional types,
such as C3 versus C4, or woody versus grass, will reg-
ulate ecosystem processes under altered climate regimes
(Kirschbaum, 2004; Sage and Kubien, 2007).

In addition to direct effects on carbon and water
dynamics, ecohydrological systems physically alter the
micro-scale energy balance through increased attenua-
tion of incoming solar radiation, which induces cooler
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soil temperatures, reduces evaporative potentials (Scholes
and Archer, 1997; Martens et al., 2000; Breshears et al.,
2009a; Villegas et al., 2010), and slows soil metabolic
processes (Barron-Gafford et al., 2011). During warm
seasons, spatially variable energy partitioning can lead
to surface soil temperatures varying by as much as
30 °C between inter-canopy and sub-canopy patches
(Barron-Gafford et al., 2011). Above ground, leaves may
frequently warm beyond thermal optima to the point
where electron transport capacity becomes limiting and/or
Rubisco activase becomes heat labile, reducing photo-
synthetic capacity (Amax) (Sage et al., 2008) leading to
both plant and ecosystem changes. Finally, energy par-
titioning within these systems contributes significantly
to the total global warming potential associated with
changes in semi-arid regions (Zeng et al., 2002; Pielke
et al., 2007; Rotenberg and Yakir, 2010). Large uncertain-
ties exist in understanding the influence of an ecosystem
on its immediate microclimate, biological responses to
micro-environmental variability, and the net partitioning
of incoming radiation into sensible and latent heat flux.

Ecological responses vary at event, seasonal, annual,
and inter-annual scales

Moisture availability varies in space, from sub-metre
to continental scales and in time from individual wet-
ting/drying cycles to decadal and longer oscillations. This
variation is driven by strongly stochastic processes in
most water limited regions (Porporato et al., 2004; Katul
et al., 2007). The effects of changes in precipitation vari-
ability on net ecosystem carbon fluxes will depend on
how constituent fluxes of photosynthesis and ecosystem
respiration respond (Huxman et al., 2004; Chen et al.,
2009; Williams et al., 2009). Moisture variability affects
ecosystems’ net carbon balance at numerous scales and
through multiple interacting pathways, including physio-
logical, phenological, community structuring, and evo-
lutionary (Weltzin et al., 2003; Schwinning and Sala,
2004; Jenerette and Lal, 2005; Shen et al., 2008). In
WLES, moisture often arrives as discrete events leading
to metabolic pulses of heterotrophic and autotrophic pro-
cesses (Noy-Meir, 1973; Huxman et al., 2004; Reynolds
et al., 2004). In many cases, the spatial and temporal
distribution of events can be as important for ecohy-
drological functioning as the total magnitude. Timing of
rainfall relative to other rainfall events, such as events
separated by hours or weeks, and other seasonal cues,
including plant activity or other meteorological condi-
tions, is often as critical to ecosystem responses as the
mean climate (Reynolds et al., 2004; Bates et al., 2006;
Jentsch et al., 2007). Such spatial and temporal variability
can have large consequences for ecosystem functioning
and overall partitioning of precipitation into E, T, and
run-off (Weltzin et al., 2003; Collins et al., 2008).

At the scale of an individual event, large cascades of
biological responses follow the wetting of a previously
dry ecosystem. A mechanistic understanding of these

pulse dynamics is generally lacking, especially in scal-
ing organismal processes to whole ecosystem function-
ing (Jentsch et al., 2007). Micro-organisms often have
immediate direct responses to wetting, which are then
modulated by community interactions and substrate avail-
ability. Emergence from drought, in both plant and micro-
bial organisms, results in rapid sub-cellular and whole
organism responses coordinated through multiple sig-
nalling pathways leading to an overall metabolic upreg-
ulation. Sensitivity to these drying–wetting cycles may
further be influenced by vegetation through variation in
leaf physiology, phenology, local microclimate, whole
plant hydraulics, and litter decomposition (Schwinning
and Sala, 2004; Cornwell et al., 2008; Jenerette et al.,
2009). In aggregate, these processes lead to whole com-
munity and ecosystem pulses with complex trajectories
for the overall net exchanges of CO2 and water.

Phenological dynamics of vegetation interact with sea-
sonal changes in moisture and are drivers of individual
rainfall event response variability. However, generating
a predictive theory of phenological patterns for whole
ecohydrological systems has been challenging. Pheno-
logical differences often vary with life-form with many
constrained deciduous or dynamic exploitation strate-
gies. Woody vegetation is usually more constrained and
grasses are often more exploitative. Vegetation growth
is generally limited by meristem tissue and the abil-
ity to transfer carbon between carbon storage tissue and
meristems places a key biological constraint on ecosys-
tem seasonal sensitivity to precipitation (Thornley, 1991;
Knapp and Smith, 2001). In WLES, phenological dynam-
ics are closely connected to precipitation regimes and
exhibit complex dynamics with unexpected dependencies
across multiple rain seasons (White et al., 1997; Botta
et al., 2000; Picard et al., 2005; Jenerette et al., 2010).

Many WLES exhibit strong inter-annual variability in
biological activity leading to large differences between
actual biomass in a given year and what would be
predicted as the ‘steady-state’ biomass (Arnone et al.,
2008; Scott et al., 2009; Misson et al., 2010). A year with
unusually high precipitation preceded by several years
of low precipitation will likely have reduced biological
capacity to respond, and correspondingly, lower than
expected functioning. Similarly, dry years following
wetter periods will likely be associated with unexpectedly
high whole ecosystem respiration rates (Arnone et al.,
2008; Scott et al., 2009).

Ecohydrological networks

The direct linkages between individual components of
ecohydrological carbon, water, and energy fluxes are
embedded in a highly organized spatial, temporal, and
organizational network both in the horizontal and verti-
cal dimensions (Turnbull et al., 2008). Ecohydrological
systems are composed of units that range from microp-
ores or individual cells through hillslopes and organisms,
to watersheds and ecosystems. From ecological hierarchy
theory (O’Neill et al., 1986) the network of connections
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among lower levels gives rise to higher-level phenomena,
which, in turn, modify distributions at the lower levels.
Separation of processes across a network of interactions
often leads to a wide array of complex behaviours includ-
ing feedbacks, thresholds, and hysteresis (Turnbull et al.,
2008). In many cases, these network properties can serve
to dampen the large source of individual process nonlin-
earities that occur in the system (Sivapalan, 2003). The
couplings among vegetation, soils, and hydrology create
several feedbacks; for example, the formation of vegeta-
tion patches is self-reinforcing by leading to further accu-
mulation of nutrients, organic matter, and soil moisture
in the individual patches (Schlesinger et al., 1990; Okin
et al., 2009). Thresholds are commonly crossed, leading
to large changes in system configuration and function-
ing with prominent examples ranging from desertification
(Rietkerk et al., 2004) to the initiation of saturated flow
(Tromp-van Meerveld and McDonnell, 2006b) where a
hillslope goes from a state unconnected with the stream
to one fully coupled via a continuously connected tran-
sient water table. Hysteresis effects, where multiple states
of key output variables occur in response to proposed
drivers, are observed in both hydrological and ecosystem
processes and are commonly associated with interactions
at the ecohydrological interface. Prominent examples for
both include patterns of ecosystem respiration (Vargas
and Allen, 2008) and the linkages between patterns of
topography, soil moisture, transpiration, and species dis-
tribution at the hilllsope scale (Tromp-van Meerveld and
McDonnell, 2006a).

TOWARDS SYNTHETIC ECOHYDROLOGICAL
THEORY: MERGING CONTINUOUS AND

DISCRETE SCALING

A challenge for an ecohydrological synthesis is that
primarily—although certainly with prominent counter
examples of both—hydrologists have been examining
scale-independent properties, whereas ecologists have
been concerned with scale-dependent properties of ecohy-
drological systems, again reflecting differences in New-
tonian and Darwinian research approaches. Consilience
among theories is needed to bridge across sub-cellular
to landscape processes, where over such scale ranges
both properties are important. Key to this integration is
the concept of spatial scale. Like the study of relation-
ships and interactions among individuals, populations,
and communities, the science of ecology may also be
described by taking an object-oriented view of the world.
A primary focus is on the tree or the forest, rather than
a ‘degree of treeness’. There are many such bound-
aries between scales of organization and much ecological
research investigates processes within assumed homoge-
neous units, e.g. a tree, or crossing between scale bound-
aries, e.g. tree–forest interactions (O’Neill, 1989; Wu
and Loucks, 1995). In contrast, the science of hydrol-
ogy has traditionally taken a continuum perspective, with
each point in space characterized by a variety of param-
eters and variables, e.g. porosity, degree of saturation,

and nitrate concentration (Beven, 1995). Variation among
parameters and variables is often connected to dimen-
sionless quantities with an emphasis on generating scal-
ing approaches (Lyon and Troch, 2007; Harman and
Sivapalan, 2009). One challenge for the emergent field
of ecohydrology is bringing together these continuum
and object-oriented perspectives. Research examining the
ecological effects of precipitation variability highlight
applications from both perspectives where descriptions
of rainfall distribution regimes (Rodriguez-Iturbe et al.,
2001b; Porporato et al., 2004) are being contrasted with
description of responses to discrete events and sequences
of events (Huxman et al., 2004; Baldocchi et al., 2006;
Jenerette et al., 2008).

A synthetic ecohydrological approach will incorpo-
rate continuous scaling within limited-scale domains and
disjunctions in scaling relationships at the boundary of
scale domains. Hierarchy theory organizes complex phe-
nomena into components that are both constructed of
and form other components at different scales (Allen
and Starr, 1982; O’Neill et al., 1986; Simon, 1996; Wu,
1999)—with much of these scale dependencies arising
from the presence of organisms. Higher levels interact
primarily with lower levels through constraints to pro-
cesses and by imposing external regulation; higher levels
provide the limits to the variation within a lower level.
Within a hierarchical level, self-similar spatial patterns
have been observed for many ecohydrological physi-
cal structures (Mandelbrot, 1983; Phillips, 1993; Nikora,
1994) and associated processes (Kirchner et al., 2000;
Harman and Sivapalan, 2009). Hierarchical breaks occur
in biological mechanisms at cellular, organ, sub-canopy,
organism, canopy, stand, community, and forest scales
and in hydrological processes at the soil column, hills-
lope, catchment (where transport is dominated by land-
scape characteristics), and large river basin (where trans-
port is dominated by river network characteristics) scales.
Initial applications of hierarchical approaches have been
used in several ecohydrological studies to identify link-
ages between terrestrial and aquatic components across a
landscape (Fisher et al., 1998; Dent et al., 2001; Jenerette
and Lal, 2005; Turnbull et al., 2008).

In soil physics, the concept of the representative ele-
mentary volume (REV) is used to describe the spatial
scale at which a soil sample, for example, is represen-
tative of the continuum. Meaning, the minimum scale
at which it is appropriate to describe relevant charac-
teristics such as hydraulic conductivity (Hillel, 1998).
Similarly, in catchment hydrology, the representative ele-
mentary area (REA) concept has been quantified based
on stream gauging, where a threshold catchment area
defines the scale at which the variance in unit area dis-
charge collapses to a single value (Woods et al., 1995).
This can describe, for instance, the appropriate minimum
scale for gauging a stream for such results to be repre-
sentative to streams elsewhere in the watershed system.
In this sense of an REV or REA, there exists a range
of scales for which the mathematical representations of
processes are stable, and small changes in scale do not
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greatly influence the dynamics of the system. The mathe-
matical tools of self-similarity effectively describe those
scales (as dimensionless groups of combinations of all
variables), eliminate the functional dependence of certain
dimensionless groups on the governing partial differen-
tial equation (i.e. reducing it to an ordinary differential
equation), and can lead to analytical solutions of complex
problems (Huppert and Woods, 1995; Barenblatt, 1996).
Similarly, the REV and REA concepts can be extended to
temporal scales to identify representative time domains
where processes are nearly decoupled from much higher
and lower frequencies of variability, which can then be
effectively described as either noise or constant.

Many uses of the REV and REA are similar to ecolog-
ical approaches of hierarchical partitioning. We frame a
coupling between ecology and hydrology around these
consistent concepts of the REV and REA and hierar-
chical partitioning. The fundamental unit, as such, is
the ecohydrological patch, a relatively homogeneous spa-
tially and temporally defined unit of a WLES (Figure 3)
(Urban et al., 1987; Pickett and Cadenasso, 1995). Appli-
cations of ecohydrological patch concepts should facili-
tate combining hierarchical partitioning and scale simi-
larity in ecological and hydrological domains to better
resolve scaling relations of complex WLES. This type
of approach has been used recently to explore catch-
ment scale REAs and how landscapes control the transit
time of water in catchments, where catchments are anal-
ogous to soil cores and a particular size of catchment is
defined as being representative of the continuum of con-
ditions across all catchments (Hrachowitz et al., 2010).
As Sivapalan (2003) notes, in order to arrive at a satis-
factory simplicity, we clearly need a mechanism in any
such aggregation to whittle down the unnecessary process
details and to transfer dominant process control from the
hillslope to the watershed scale.

Figure 3. Self-organization of vertical structure and hydrologic fluxes
(excluding evaporative losses) for three different patch types gives
rise to whole landscape self-organization. The arrows show directional
movements of water. Hydraulic redistribution occurs vertically and
horizontally. This division of dryland ecosystem patches into these three
types is a widely used simplification. Commonly, two soil depths (or
three including a surface pool) are modelled where in the upper pool
both grasses and trees can obtain water and in the lower pool only trees
can obtain water. Much research on rooting depth shows that rooting
profiles are dynamic thus making the actual depth of each pool variable,
although perhaps predictable. This figure depicts the potential sources
of water and possible movements through the soil and vegetation for
each of these patch types. Changes in the vegetation community alter the
vertical and horizontal connectivity at the individual patch scale. Across
an ecohydrological landscape, the arrangement in these three patch types
often generates self-organized waves and islands of distinct patch types

and strong degrees of spatial correlations.

A direction for synthesis is the suggestion that eco-
hydrological systems, in part through self-organizing
processes, create these nested hierarchical structures of
patches consisting of both broad domains of similarity
and discrete changes in functioning across scales. Con-
sidering the ecohydrological patch, one wonders if there
are general principles that can be drawn out regarding the
effect of vegetation on the appropriate spatial scales of
hydrologic parameters and variables. This self-generating
scaling occurs through ecohydrological self-modification
of the environment with interacting positive and nega-
tive feedback mechanisms. For example, in the initial
stages, shoot growth is a positive feedback, since more
and larger leaves provide carbon to fuel further growth.
At later stages, stomatal closure in response to soil dry-
ing is in turn a negative feedback constraining water
loss and carbon uptake. Within this context, one emerg-
ing theme with respect to limiting resources is a pattern
of positive feedbacks operating at spatial scales larger
than the vegetation and negative feedback mechanisms
operating at scales smaller than the vegetation. That is,
through coupled positive and negative feedback mecha-
nisms at alternate scales plants act to concentrate limiting
resources to the scale of the vegetation and to homogenize
those resources within the scale of the vegetation. This
concentration and homogenizing within individual scales
reinforces patch distributions. These notions of resource
acquisition and homeostasis are foundational to ecology
and may provide insight to the issue of scale in eco-
hydrology. The emphasis on self-organization as both a
source of structure and a primary function for ecohydro-
logical systems suggests that a CAS perspective may be
helpful for improved understanding and generating future
predictions.

COMPLEX ADAPTIVE ECOHYDROLOGICAL
SYSTEMS

CAS characteristics of ecohydrological systems

We extend these ideas of complexity and self-organization
across multiple scales by further suggesting an approach
describing WLES as CAS, which may be as powerful,
and provide complementary information, as a primar-
ily reductionist approach (Railsback, 2001; Grimm et al.,
2005). CAS are those systems that exhibit complexity
in both behaviour and structure and have the capac-
ity for self-organization and adaptation to environmental
conditions (Holland, 1992). Much of these approaches
are extensions of general systems and cybernetic the-
ories (Ashby, 1956; Simon, 1996). CAS are generally
composed of many semi-autonomous units that interact
through some, although not exclusively all, non-linear
processes. A CAS depends on exchanges with an envi-
ronment to maintain a state far from equilibrium char-
acterized by the self-organized generation of multiple
hierarchical relationships (Wu and Loucks, 1995). Across
scales, a CAS has some capacity to alter its configuration
and influence its own micro-environment. In addition to
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the inherent properties of complex systems, CAS also
have the capacity to modify the rules of interactions
between components or the processes occurring within a
single component (Kauffman, 1993; Cowan et al., 1994;
Levin, 1998; Chave and Levin, 2003). However, the
potential for adaptation is strongly dependent on histor-
ical legacies. The approach of CAS extends hierarchical
and other organizational theories that do not explicitly
examine the sources of scale partitioning to a science
that explicitly examines the generation and dynamics of
hierarchical units as a fundamental function (Holling and
Gunderson, 2002).

CAS can be described through several system-level
properties including instantaneous state and whole system
characteristics (Table II). Composition, broadly described
as the number and diversity of units within and between
hierarchical levels, and configuration, the arrangement
of units both spatially and functionally, are the two
primary characteristics influencing organization. Bio-
logical sources of diversity span genomic variability
within species and across taxa to functional variability
of responses to common drivers. Hydrologic sources of
diversity at the patch to landscape scale include, but are
not limited to, heterogeneity of soil texture, flow paths,
and precipitation. Variations in ecohydrological configu-
ration arise from root and shoot structure, flow paths, and
concentration gradients, which in turn respond to envi-
ronmental patterns and internal organization.

Self-organization

Like CAS, self-organization in ecohydrological systems
provides a strong control over sensitivity to environmen-
tal variability. Ecohydrological self-organization can be
found across space in both vertical profiles and horizontal
surfaces with sources in both ecological and geomorpho-
logical processes (Figure 4). The scope of self-organizing
processes in ecohydrological systems can be extensive
with direct effects on primarily physical processes such
as rates of infiltration (Thompson et al., 2010) and precip-
itation regimes (Juang et al., 2007; Konings et al., 2010).
These effects extend through the vegetation, which fur-
ther influences magnitudes of soil moisture spatial vari-
ability and its spatial structure in response to wetting
(Caylor et al., 2005; Ivanov et al., 2010).

In the vertical direction, from the top of the boundary
layer to the bottom of the soil profile, ecohydrological
self-organization influences functional responses to envi-
ronmental variability. Such self-organization is indica-
tive of the inter-annual consistency of the proportion of
annual evaporation to the total soil moisture available
within a site (Horton, 1933; Troch et al., 2009). System-
level mechanisms for these findings can be expected from
trade-offs in plants maximizing efficiency and minimiz-
ing stress (Caylor et al., 2009). As a direct consequence,
rooting depth profiles adjust to patterns of precipita-
tion characteristics and act as a feedback for balancing
this trade-off (Guswa, 2010). Changes in vertical struc-
ture alter the zero flux plane, or the depth below soil

surface evaporation, influencing the rates of groundwa-
ter recharge. These coupled processes describe a self-
organizing WLES that adjusts vertical spatial structure
within an ecohydrological patch as a functional response
to the environment. Adaptation of system configuration
throughout the vertical profile can stabilize functioning
in the face of environmental variability.

Ecohydrological landscapes also exhibit self-
organizing tendencies in the horizontal distribution of
landscape components (Rigon et al., 1994; Rodriguez-
Iturbe et al., 1998; Phillips, 1999; Milne et al., 2002).
Across horizontal dimensions much organization can
be found in the spatial structure of stream networks
(Rodriguez-Iturbe et al., 1994; Stolum, 1996; Phillips,
2001) and soil-moisture patterns (Rodriguez-Iturbe et al.,
2006; Ivanov et al., 2010). Across a larger landscape of
multiple patches, ecohydrological systems tend to self-
organize the distribution of vegetation into well-defined
local patches (Klausmeier, 1999; Rietkerk et al., 2002)
and a regular distribution of patches across the landscape
(Kefi et al., 2007; Scanlon, et al., 2007; Borgogno et al.,
2009). In these cases and others, observed spatial patterns
are generally insensitive to initial conditions and have
consistent features arising across multiple environments.
Often, stochastic noise in the environment is sufficient
to cause self-organization processes to coalesce systems
into organized patchy structures (D’Odorico et al., 2006;
Borgogno et al., 2009).

Coupled self-organization in the vertical and horizontal
dimensions can be shown in ecohydrological partition-
ing of precipitation inputs. Regardless of the mechanism
(interception of overland flow, fog, or blowing snow),
vegetation tends to concentrate water to the scale of the
vegetation. Although imperfect, the hypothesis that veg-
etation concentrates limiting resources is consistent with
observations of water (and nutrient) acquisition across a
range of examples. In the coastal redwood forests of Cal-
ifornia, Dawson (1998) showed that the trees increase the
interception of fog, an example of above-ground concen-
tration of water by plants. The contribution of fog to
the hydrologic budget in the redwood stands is double
what it is without the trees (Dawson, 1998). In addition
to the concentrating effect, plants also exhibit a propen-
sity to homogenize water resources within the scale of
the vegetation. Transpiration is a process with a nega-
tive feedback; as water is removed from the soil, the
process of plant uptake is self-limiting as stomata close,
whether via a hydraulic or chemical signalling mech-
anism. Thus, as the soil dries out, the spatial pattern
changes from homogeneously wet, to an intermediate
heterogeneous distribution of soil moisture that is eventu-
ally smoothed and homogenized through drying (Ivanov
et al., 2010). Additionally, there is now extensive evi-
dence for hydraulic redistribution, both vertical and hori-
zontal, which acts to eliminate gradients in soil moisture
throughout the root zone (Dawson, 1993; Burgess et al.,
2001; Burgess and Bleby, 2006; Munoz et al., 2008; Scott
et al., 2008a). The hydraulic network of roots moves
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Figure 4. The pattern of soil moisture, a key ecohydrological state vari-
able, is strongly controlled by self-organizational processes relating
to coupled ecological and geomorphological processes across multiple
scales. The feedbacks between ecological and geomorphological pro-
cesses can occur at disparate timescales, and the relative importance
of different processes can vary in response to multiple environmental

gradients and self-organizational dynamics.

water from regions of higher to lower potential, acceler-
ating the homogenizing effect of water extraction. Also
relevant to the above discussion is the notion of tempo-
ral scale. In this section, we have focussed on timescales
that are long relative to the diel forcing of solar radia-
tion but short relative to the life-history of the vegeta-
tion. That is, the above discussion holds for timescales
over which the vegetation can be thought of as stable.
These timescales also correspond to the typical timescales
of interest in water supply. Coupling these phenomena
with processes occurring at temporal scales, where diel
changes in solar radiation and other meteorological pat-
terns are resolved, provides opportunities to more closely
link ecohydrological processes to organismal physiology.
Moving to longer timescales, such as those relevant to
successional and erosional dynamics, may give rise to
different behaviours with respect to the concentrating and
homogenizing effects of vegetation.

Resilience, resistance, stability

Stability in functioning, defined generally as the inverse
of variance over some temporal or spatial interval
(Tilman et al., 1998), is conceptually easy to measure
although the information provided about system dynam-
ics is unclear. More important for developing an under-
standing of system dynamics are variables describing
resistance and resilience (Holling, 2001). The degree of
each is dependent on self-organizational processes and
is in response to specific environmental variability (Car-
penter et al., 2001). Resistance mechanisms lead to the
maintenance of functional stability in the face of vari-
ability, whereas resilience mechanisms lead towards the
maintenance of organizational structure and may amplify
environmental variation. Often, there is a trade-off asso-
ciated with the use of either strategy (Orwin et al., 2006;
Jenerette et al., 2009). Increases in diversity have been
associated with increased stability, resilience, resistance,
and overall rates of functioning (Loreau et al., 2001;
Holling and Gunderson, 2002; Hooper et al., 2005).
Increasing the connectivity of a system similarly tends
to increase resilience and stability (Suding et al., 2004).
Although, connectivity thresholds often exist where fur-
ther increases lead to catastrophic reductions in resilience
and stability (Holling and Gunderson, 2002).

In a brief article by John H. Holland (1992), he
refers to CAS as striking balances between two types
of behaviours: exploration versus exploitation or track-
ing versus averaging. In tracking, a system responds
to environmental change rapidly whereas in averag-
ing the response is dampened. This binary seems to
be strongly tied to notions of resilience and resis-
tance. In some ways, resistance is the ability to aver-
age out environmental variability—whether too much
or too little (temperature, sunlight, water, etc.) Thus,
systems with high resistance (in the ecological sense)
are those operating from an averaging perspective.
Benefits accrue when resources are homogenized. In
contrast, systems that put more weight on ‘track-
ing’ kinds of behaviour need to be more resilient
and continually adjust to environmental variability to
use peaks or downregulate during minima of resource
availabilities.

Understanding the biophysical mechanisms associ-
ated with these system traits is providing new insights
into the maintenance of organization in ecohydrolog-
ical systems. The balance of tracking versus aver-
aging behaviour (or resilient vs resistant) will be
time-dependent; for example, a deciduous tree may be
resistant to water stress on the timescale of weeks
and resilient with respect to light and temperature at
the seasonal scale. The importance of resistance and
resilience mechanisms for ecohydrological systems have
been shown in overall net carbon flux at individual
event (Potts et al., 2006) and seasonal scales (Jenerette
et al., 2009). In these examples, below-ground processes
exhibited more tracking through immediate responses
than above-ground, and ecosystems dominated by grasses
exhibited more tracking than those dominated by woody
plants through differences in phenological sensitivity to
precipitation.

Resistance and resilience mechanisms also lead to
domains of system attractors and result in nonlinear shifts
between alternate stable states. Once resilience thresh-
olds are crossed, the system may enter new organiza-
tional states. These state-change-dynamics in drylands
are most exemplified as alternative stable states between
grass and woody dominated conditions (Carpenter et al.,
2001; D’Odorico et al., 2007; Kefi et al., 2007; Rietk-
erk and van de Koppe, 2008) and transitions in both
directions have been observed (Briggs et al., 2005; Cox
and Allen, 2008). When near resilience thresholds, sys-
tems exhibit extreme sensitivity to the environment (Car-
penter and Brock, 2006). These transitions often follow
non-linear cusp-catastrophe behaviours and have been
modelled using formal catastrophe theory approaches
(Lockwood and Lockwood, 1993). Returning the system
to the previous state requires changing the driving param-
eter much further than past the threshold for entering the
new state as this new state also has self-organizational
resilience and resistance processes (Rietkerk et al., 2004;
Scheffer et al., 2009).
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What is being optimized?

Progress in developing systems-level descriptions of eco-
hydrology commonly appeal to assumptions of optimiza-
tion. A primary challenge for using optimization is the
perceived goal-seeking behaviour of adaptation and the
need for a clear objective function over which the system
is optimizing. The classic examples of using optimiza-
tion in ecohydrological theory are Eagleson’s optimality
hypotheses that have served as an initial approach for
linking land surface dynamics with variations in pre-
cipitation (Eagleson, 1978, 1982). This theory was built
around three hypotheses: (1) vegetation canopy density
will rapidly equilibrate with climate and soil conditions
to maximize soil moisture and thereby minimize plant
water stress, (2) vegetation will maximize transpiration
efficiency through succession, thus again maximizing soil
water, and (3) vegetation will modify soil development to
maximize canopy density. Recent critiques suggest that
while the theory may provide some valuable insights,
it also conflicts with some well-understood ecological
processes (Hatton et al., 1997; Kerkhoff et al., 2004).
Potential modifications to this theory include incorpo-
rating: (1) the dynamic interaction of water availabil-
ity and C cycling, (2) physiologic differences between
different plant functional types, and (3) spatial hetero-
geneity in vegetation–precipitation interactions
(Rodriguez-Iturbe et al., 1999; Kerkhoff et al., 2004;
Sankaran et al., 2004).

More recent examples have developed optimality-
based hypotheses to better describe vertical structure
within an ecosystem for vegetation use of water (Guswa,
2008; Schymanski et al., 2008b). At biophysical levels,
stomata should adjust dynamically to maximize pho-
tosynthesis for a given water loss and this hypothe-
ses has been supported in several studies (Wong et al.,
1985; Schymanski et al., 2008a). Trade-offs in meeting
the water use—carbon gain constraints lead to contrast-
ing strategies of more intensive maximal use or more
conservative maximum use efficiency (Rodriguez-Iturbe
et al., 2001a; Porporato et al., 2004; Caylor et al., 2009;
Guswa, 2010). These trade-offs are consistent with com-
mon plant strategies (Grime, 2001). Other extensions
have looked towards biophysical relationships between
water-use efficiency and water stress and evaluated trade-
offs as a multiple constraint problem (Caylor et al.,
2009). In these examples, reference is ultimately made
to plant organismal fitness as a justification for optimiza-
tion. Several alternative extensions of Eagleson’s early
hypotheses have successfuly used thermodynamic justifi-
cations of entropy maximization (Kleidon and Schyman-
ski, 2008; Kleidon, 2010). Other alternatives suggest that
the rate of flow between distinct units is itself a cause of
optimization (Bejan and Lorente, 2006, 2010). While a
large degree of care is needed when assuming optimiza-
tion, at present, several approaches have been developed
where biological and physical objective functions have a
mechanistic justification.

Predictability and modelling

While CAS can be understood, they pose several chal-
lenges for predictability. For many CAS, the future
system state may be only loosely connected to cur-
rent trajectories. Challenges are posed within individual
state regimes, shifts between regimes, and potential for
novelty through adaptation. Predicting even at short
timescales when catastrophic changes between system
regimes occur can be challenging (Carpenter et al., 2008;
Brock and Carpenter, 2010; Hastings and Wysham,
2010). An improved understanding of what can be pre-
dicted would help direct immediate research and move
research towards a path of predicting what is possible
(Sivapalan, 2009).

Predictability is complicated by the capacity for adap-
tation. Adaptive processes in CAS can lead to novel
future processes and system configurations. Adaptation
generates this novelty by adjusting parameters of pro-
cesses, adjusting connections between components, and
creating new processes and connections. WLES have
many pathways for adaptation at multiple temporal and
spatial scales (Figure 5). The means by which adaptation
occurs can lead to enhanced resilience or resistance or
lead to rapid shifts in system states. Even in the canon-
ical examples, adaptation can rapidly change the rules
of interactions that can be understood although poorly
predicted if even at very short time horizons (Arthur,
1999).

A consequence of complexity suggests that predicting
properties of system variability may be more success-
ful than predicting state values. This predictive property
is based on the dependence and internal propagation of
disturbance events. One approach, self-organized critical-
ity, suggests that CAS do not adjust mean properties but,
rather, distributions of variances (Bak et al., 1988; Kauff-
man, 1993; Bak, 1996; Turcotte and Rundle, 2002). The

Figure 5. Stommel diagram of possible adaptation mechanisms loosely
arranged across a broad range of temporal and spatial scales. At the
finest scales, variation in leaf conductance can occur for an individual
leaf within an hour. At broadest scales, soil formation can span regions

and millennia.
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theory predicts that in CAS the magnitude of individ-
ual dissipative events are more closely related to system
self-organization than environmental variability. Large
events are rare whereas small events are common; even
in response to similar drivers, and although predictions
of individual events is challenging, the frequency of all
events is predicted by the scaling relationship between
event frequency and size. Several ecohydrological exam-
ples evaluating variance distributions have been used
to better understand flow paths (Rodriguez-Iturbe et al.,
1992; Stolum, 1996; Kirchner et al., 2000) and vegetation
structure (Kefi et al., 2007; Scanlon et al., 2007). Many
of these variance distribution processes have specifically
been used to examine systems that are continually adapt-
ing, such as evolutionary processes (Kauffman, 1993).

In overcoming the challenges with predictability,
improved models and approaches to modelling will
likely be necessary. Models that emphasize the coupling
between environmental and system variability will allow
better descriptions of system functioning in response
to the environment. Several statistical approaches have
been used successfully to identify such coherence in
spatial and temporal dimensions between environmental
and system variability including wavelet analysis (Keitt
and Urban, 2005; Vargas et al., 2010) and related spec-
tral and power analyses (Keitt, 2000; Yu, 2006). Jointly
applying these and other statistical approaches to mech-
anistic models that resolve fine scale temporal resolu-
tion would facilitate linking systems theory with new
high-resolution data sets (Ruddell and Kumar, 2009).
Such joint analyses would help change the direction of
modelling dynamics from predicting mean system states
to better tracking changes in the state. Recently, the-
ory and data for coupling detailed physiological mod-
els with whole-ecosystem measurements at half-hourly
scales have shown great success (Desai et al., 2007;
Jenerette et al., 2009; Medvigy et al., 2009). Expanding
on this foundation by describing potentials for regime
changes will be necessary for identifying systems that
are at risk to such changes and the resulting consequences
over decadal and longer timescales.

IMPLICATIONS AND FUTURE DIRECTIONS

Applications of similarity and hierarchical partitioning
approaches to better understand WLES are challenging.
Throughout, we have echoed a general suggestion (Law-
ton, 1999) that spatial scaling patterns provide opportu-
nities for improved pattern-process couplings of WLES.
Because of often-unique local combinations of environ-
mental variables and intrinsic self-organization, which is
in part a response to this variability, place-based sci-
ence approaches are likely to provide opportunities to
identify general mechanisms once location-specific vari-
ables are understood—a resolution of Newtonian and
Darwinian scientific traditions. An approach recognizing
the system-level organization processes complements and
extends existing detailed process-level information and

can often suggest new directions for improved under-
standing of process. From a combined process-system
science a more mechanistically grounded understanding
of individual processes needs to be embedded in a sys-
tems approach to improve capacity for prediction, with
particular emphasis on regime change dynamics.

Knowledge of ecohydrological system-level properties
frequently suggests new avenues for improved process-
based understanding of direct mechanistic controls. Celia
and Guswa (2002) suggest that most, if not all, hysteresis
in hydrologic systems comes from an incomplete descrip-
tion of the true functional dependence. These ideas hark
to early cybernetic definitions of system dynamics and
the necessity of single-valued transformations (Ashby,
1956). Identifying a hysteresis can suggest opportunities
to better understand mechanistic relationships in the con-
text of systems-level organization. For example, if soil
moisture is reported only as an average over the soil
column, then transpiration as a function of soil mois-
ture will appear hysteretic; at the point scale in a soil,
capillary pressure may be a function of not only aver-
age soil saturation but also the geometric arrangement of
interfaces and voids. This is similar to the hysteresis com-
monly found between temperature and respiration—the
hysteresis can result from changes in available substrate
from daily (recent photosynthate) to seasonal (litter from
senescence) timescales (Davidson et al., 2006; Riveros-
Iregui et al., 2007; Vargas et al., 2010) or from physical
processes of heat and CO2 transport alone (Phillips et al.,
2010).

A CAS approach should lead to a unified, mechanis-
tic understanding of how changes in vegetation affect
ecohydrological functioning. The phenomena of woody
plant encroachment (WPE) (Huxman et al., 2005; Knapp
et al., 2008) and widespread vegetation die-off (McDow-
ell et al., 2008; Breshears et al., 2009b; Allen et al.,
2010) provide two examples in changes to the propor-
tion of woody plant coverage that could illustrate general
WLES system-level processes. Both of these changes
cause large-scale reorganization of the ecohydrological
system; however, their consequences for long-term sus-
tainability of the system prior to the change may dif-
fer. WPE is a regime shift in the dominant organisms
and resulting scale of variability associated with chang-
ing from grasses to trees. WPE is often described as
a conversion between alternate stable states, and return
to prior grassy states may be difficult. Predicting eco-
hydrological responses to WPE has been challenging.
Expansion of woody plants commonly leads to reduced
groundwater recharge (Huxman et al., 2005); but, in
some cases, woody expansion has been associated with
improved recharge (Wilcox and Huang, 2010). In con-
trast, widespread mortality is a punctuated event across
the entire system resulting in an immediate change in
the dominant living vegetation. In contrast to WPE, a
disturbance such as die-off may not fundamentally alter
the system and allow re-colonization and succession to
return the system to the prior state with little intervention.
Immediately following the mortality event, however, the
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system may be poised to enter alternate system attrac-
tors. Together, these two examples show how large-scale
changes in woody cover can cause and result in substan-
tial changes to system structure and self-organizational
trajectories. At the same time such systems-level anal-
yses can also lead to specific process level predictions
suitable for empirical evaluation describing the mecha-
nisms associated with both changes.

Improved understanding of WLES will be needed to
better forecast potential terrestrial feedbacks to earth sys-
tem dynamics. With limited buffering and predominant
resource tracking, WLES may be more sensitive to envi-
ronmental variability than more humid environments, as
evidenced by recent observations of large-scale vegeta-
tion mortality associated with unusually warm droughts
in drylands (Breshears et al., 2005; Allen et al., 2010).
Such transitions may lead to smaller-scale shifts in the
composition of subsequent species in these altered envi-
ronments or larger-scale changes in the terrestrial energy
balance (Rotenberg and Yakir, 2010) and rapid emis-
sions of greenhouse gases as large stores of organic
material are released with climate change induced dry-
ing (Reichstein et al., 2002; Ciais et al., 2005; Reich-
stein et al., 2007). Many projections of future climates
suggest that global warming will be accompanied by
larger rates of evaporation and more variable precipita-
tion regimes (Douville et al., 2002; Min et al., 2011).
These combined changes to the water balance will likely
lead to an expansion of WLES both spatially, as the
area of mean water deficit increases, and temporally,
as prolonged droughts place usually wet areas into an
expanding window of water deficit. How coupled cli-
mate and vegetation changes alter available soil, surface
and groundwater supplies, and overall biogeochemistry
will reflect how self-organizational ecohydrological pro-
cesses differentially partition precipitation and overall net
metabolic functioning.
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